

Technologies, LLC

Quantifying ECLSS Robustness for Deep Space Exploration

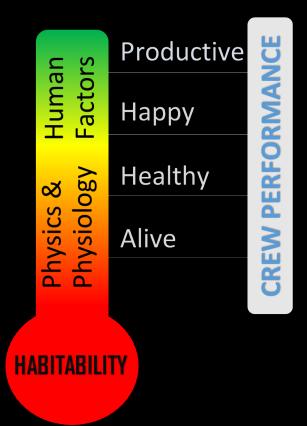
ICES Paper 2019-239

Christine Escobar & Adam Escobar, Space Lab Technologies, LLC Dr. James Nabity, University of Colorado at Boulder

Solution Overview

- I. The Need for Robust ECLSS Design
- **II. Robust Design Methodology for ECLSS**
- **III. Quantifying ECLSS Robustness**
- **IV. Improving ECLSS Robustness**

0



International Conference on Environmental Systems, Boston, MA 2019 ماد

ECLSS REQUIREMENTS

Mission Objectives Habitat RequirementsECLSS Requirements

Physics & Physiology

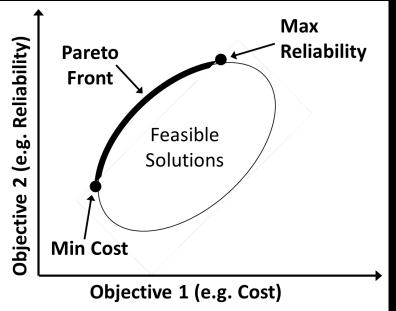
- Regulate the Atmosphere
- Provide Potable Water
- Remove Waste Hazards
- Food

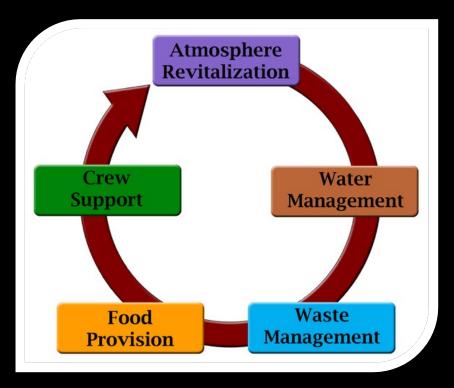
Human Factors

- Safety Infrastructure
- Health Countermeasures
- Crew Accommodations

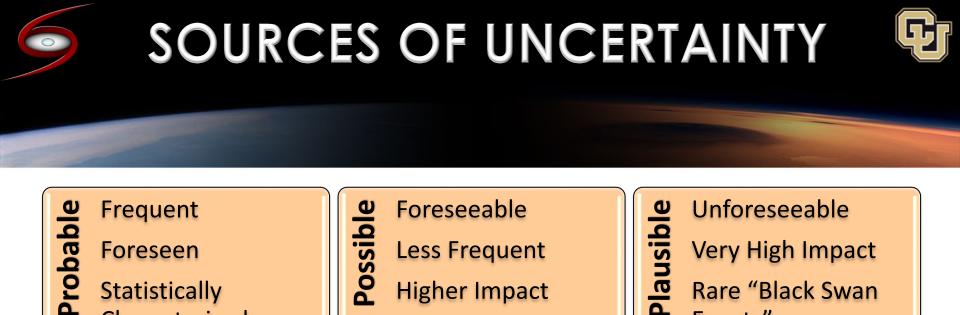
Design Drivers

- Human metabolic inputs & outputs
- Space environment
- Mission characteristics





ECLSS DESIGN OPTIMIZATION


Pareto Front for Multi-Objective Optimization

Optimization finds the best possible design solution amongst all available solutions

Characterized

Aleatory (Irreducible Randomness) **→** Epistemic (Reducible Lack of Knowledge)

Higher Impact

Complexity + Increased Life -> Increased Variability

Sources of Uncertainty:

- Component Performance
- System Dynamics

11 **Statistically**

Metric Uncertainty

Operating Environment

Rare "Black Swan

Events"

Mission Characteristics

COST OF UNCERTAINTY

Failure Costs: LoC, LoV, LoM

- Cost of Prevention:
 Redundancy, margin, etc.
- Unanticipated system
 behavior in un-tested
 environments
- Increased Complexity:
 Lower reliability & higher
 maintenance costs

"COST OF QUALITY"

International Conference on Environmental Systems, Boston, MA 2019

Cost of uncertainty rises with mission duration & distance, increasing importance of **ROBUSTNESS** relative to other optimization criteria

A PROPOSED ROBUST DESIGN METHODOLOGY FOR ECLSS

 \bigcirc

DEFINING ECLSS ROBUSTNESS

"Capable of performing without failure under a wide range of conditions" Merriam-Webster

"Often [spacecraft] systems are forced to operate under conditions which deviate significantly from ideal design conditions. A degree of how well a system performs with **no appreciable degradation** in performance **under such conditions** is measured by its **robustness**." *Miller et al. (2008)*

ECLSS robustness is its ability to **maintain habitable** conditions for crew survival and productivity over the mission lifetime under a **wide range of conditions**.

Escobar et al., 2017

→ Ordinary usage (Reliability)

→ Temporary disturbances or disruptions (Robustness or Resilience)
 → Long term system or mission changes (Resilience or Survivability)

ROBUST CHARACTERISTICS

ROBUST SYSTEM CHARACTERSTICS

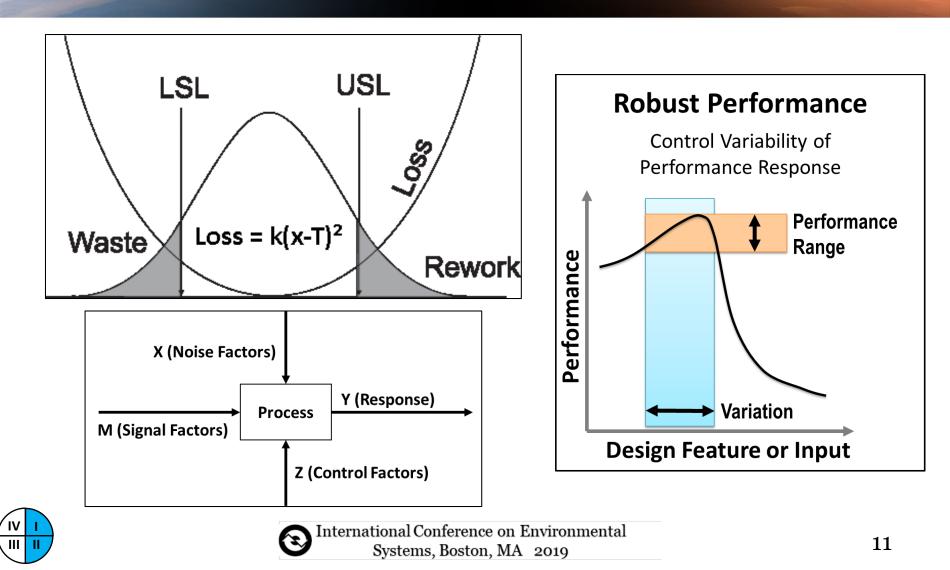
RELIABLE

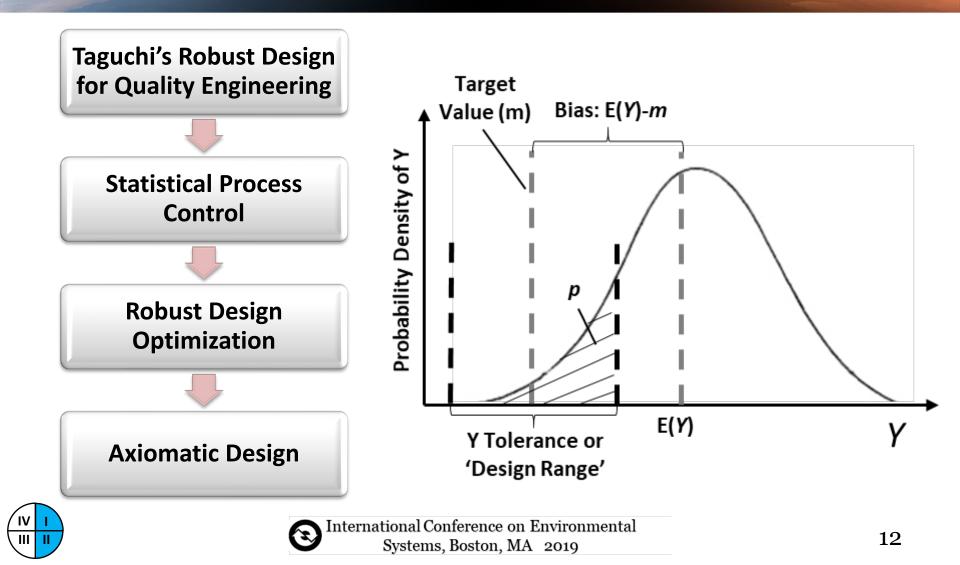
RESILIENT

SURVIVABLE

Insensitivity of performance (i.e. maintaining habitability) to

1) Random expected failures and conditions (reliability)


- 2) Foreseen but unexpected deviations in conditions or disturbances (resilience)
- 3) Unforeseen disturbances or adverse events (survivability)



ROBUST DESIGN DEFINITIONS AND CONCEPTS

EVOLUTION OF ROBUST DESIGN

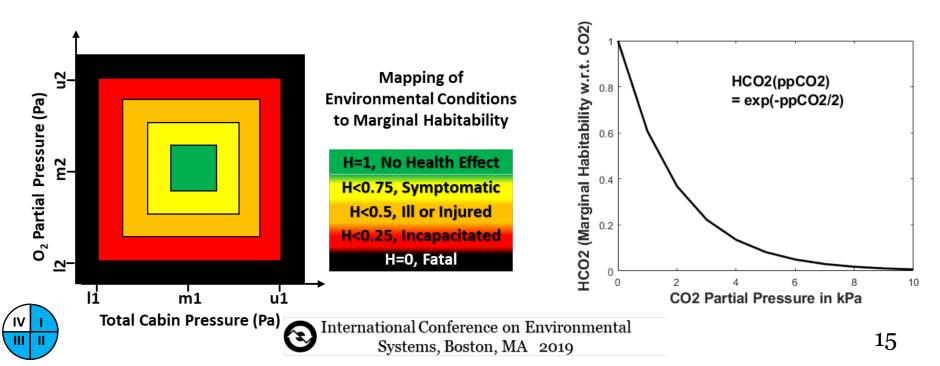
ROBUST DESIGN METHODOLOGY FOR ECLSS

General Methodology 🗲	ECLSS Methodology
1. Define key product characteristic (KPC):	Need to define "Habitability"
 Identify & characterize variation sources: 	Need to characterize ECLSS inputs, operating conditions, component reliability, etc.
 Define or model system behavior: 	Need mathematical or physical ECLSS model
4. Quantify robustness of KPC given variation & system model:	Need an ECLSS robustness metric
5. Select or improve design:	Identify design features contributing to habitability loss w/ minimum cost of quality

 \bigcirc

QUANTIFYING ECLSS ROBUSTNESS

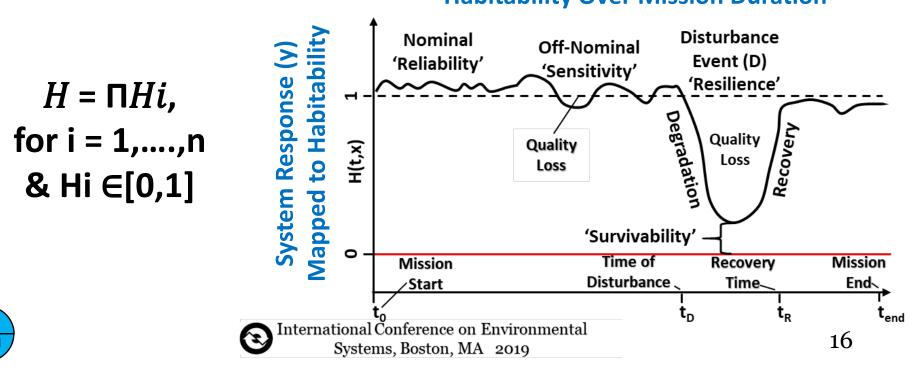
0



HABITABILITY INDEX: ECLSS KPC

Potential Habitability Contributors $(y_i) \rightarrow Map$ to Utility Functions, $H_i \in [0,1]$

- 1. O2 partial pressure in cabin air
- 2. CO2 partial pressure in cabin air
- 3. Total cabin pressure
- 4. Wet bulb temperature


- 5. Food quality (days of available acceptable food per CM)
- 6. Water quality (days/CM)
- 7. Presence of noxious substances

- 1. *H* must be 1 when crew performance capacity is full \rightarrow all *Hi* are equal to 1.
- *2*. *H* must be 0 under any fatal conditions, i.e. when any Hi = 0.
- 3. *H* must be no better than any individual *Hi*, i.e. $H \le \min(Hi)$
- The impact of *Hi* on *H* is not independent. A reduction in one *Hi* increases the impact of another *Hi*.
 Habitability Over Mission Duration

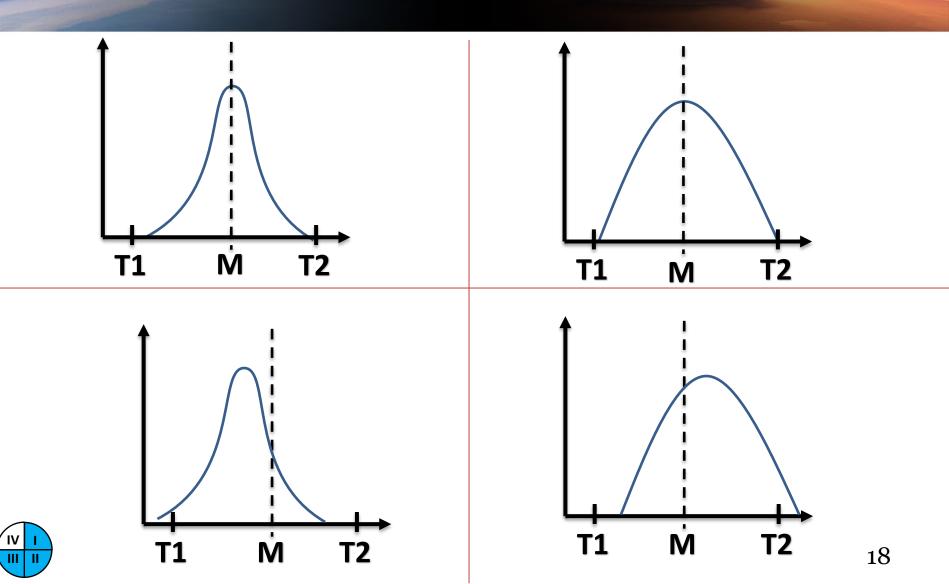
- **1.** Variance \rightarrow Min Var(Y|x)
- 2. Effective Fitness \rightarrow Max E(Y|x)

See Paper for Details

3. Minimax Optimization (Worst Case Philosophy) →

Choose design parameter that minimizes the worst case value of response Y, given variation in input X

- **4.** Process Capability Index \rightarrow Max $\Delta/6\sigma$
- **5. Quality Loss:** Min $E(L) = E[k(y-m)^2] = k[(\mu-m)^2 + \sigma^2]$
- 6. Sensitivity: Min $\delta y/\delta x$ (sensitivity coefficients) a.k.a. Jacobian
- 7. Signal to Noise (Taguchi): Max $\eta = 10\log_{10}\mu^{2/\sigma^{2}}$
- 8. Mean + Variance Weighted sum: $\min(1-\omega)E(y|x) + \omega Var(y|x)$
- **9. Variation Risk Priority** *#* → Method to approximate Var(Y|**x**) when design fidelity is low
- **10. Information Content (Axiomatic Design):** Min I = $\log_2(1/p)$



BIAS VS SPREAD: WHICH IS WORSE?

 \bigcirc

56

Я_Н - A PROPOSED METRIC FOR ECLSS ROBUSTNESS

> Habitability Loss:

 $L_{H} = (H-1)^{2}$

> Expected Habitability Loss: $E[L_H] = E[(H-1)^2] = [1-E(H)]^2 + Var(H)$

ECLSS Robustness:

$$\Re_{H} = 1 - \sqrt{E(L_{H})} = 1 - \sqrt{[(1 - E(H))^{2} + Var(H)]}$$

International Conference on Environmental Systems, Boston, MA 2019

'bias'

'spread'

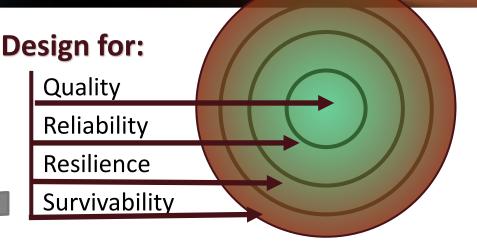
IMPROVING ECLSS ROBUSTNESS

0

ROBUST DESIGN METHODOLOGY FOR ECLSS

General Methodology 🗲	ECLSS Methodology
1. Define key product characteristic (KPC):	Need to define "Habitability"
2. Identify & characterize variation sources:	Need to characterize ECLSS inputs, operating conditions, component reliability, etc.
3. Define or model system behavior:	Need mathematical or physical ECLSS model
4. Quantify robustness of KPC given variation & system model:	Need an ECLSS robustness metric
5. Select or improve design:	Identify design features contributing to habitability loss w/ minimum cost of quality

 \bigcirc



IMPROVING ROBUSTNESS: DEFENSE IN DEPTH STRATEGY

Many Design Options to Consider:

- Materials, technology choices
- Margin
- Tolerancing
- Redundancy (many types)
- Fault detection & isolation
- Repair/recovery
- Noise reduction through shielding, etc.
- Process changes
- Decrease complexity
- Decrease coupling (controllability)

Good day → Not so good day → Bad Day Probable→Possible→Plausible Fail Safe → → → Safe to Fail

Objective: maintain habitability

IMPROVING ROBUSTNESS: MINIMIZE COST OF QUALITY

Robustness Normalized ESM (?)

Equivalent mass required to achieve equivalent robustness

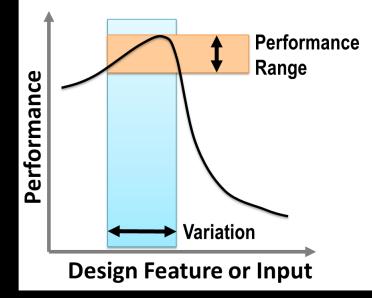
$\text{ESM}_{\text{R}} = \text{ESM}/\text{R}_{H}$

Development of Marginal Habitability Functions for ECLSS sub-systems

Requires cooperative research amongst subject matter experts!

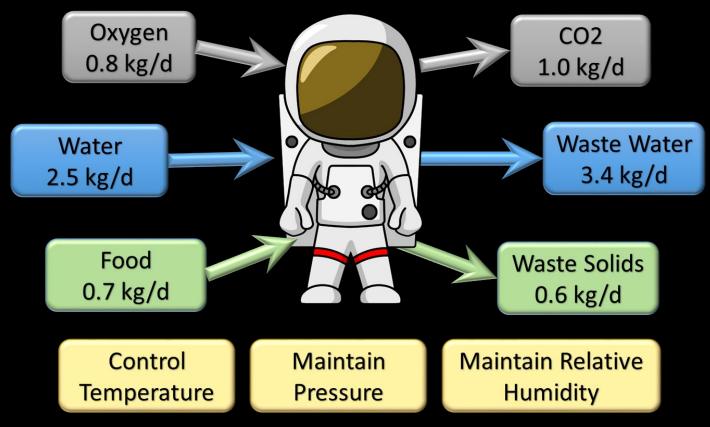
Demonstrate ECLSS robustness analysis with historical data (ISS, etc.)

Demonstrate robust design methodology


Reaching consensus on marginal utility functions contributing to habitability will be challenging, but instrumental in improving ECLSS design

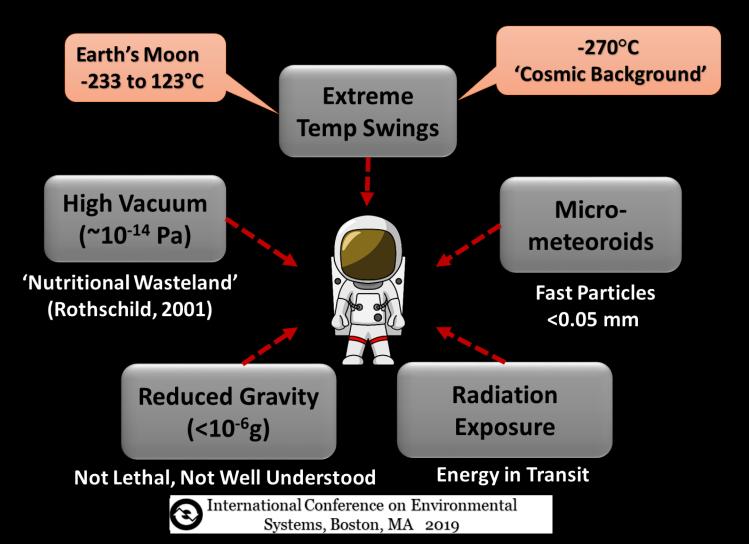
QUESTIONS?

Control Variability of Performance Response



ECLSS DESIGN DRIVERS

Human Metabolic Inputs & Outputs


BVAD 2015 (pp 50, 53, 64, & 106)

ECLSS DESIGN DRIVERS

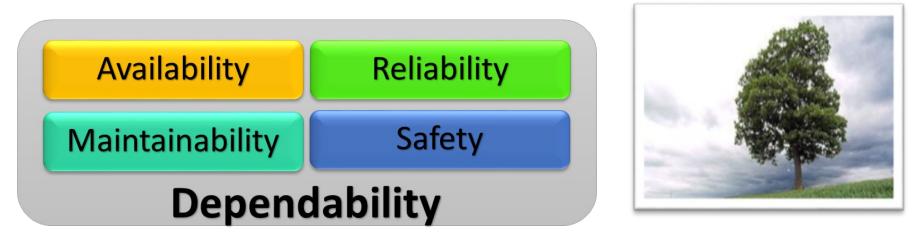
Interplanetary Environment

ECLSS DESIGN DRIVERS

Mission Characteristics

- Mass & Volume Constraints
- EVA Activity
- Crew Workload
- Surface Operations
- Distance from Earth

NASA Exploration Systems Architecture Study https://www.nasa.gov/pdf/140649main_ESAS_full.pdf



Reliability Definition

"The probability of a system or system element performing its intended function under stated conditions without failure for a given period of time."

Adcock, 2016

"The capacity to recover quickly from difficulties; toughness"

"The ability of a substance or object to spring back into shape; elasticity" Oxfrd Dictionary

Engineering definitions vary widely:

- Ability to adapt to changing conditions and prepare for, withstand, and rapidly recover from disruption (DHS)
- Attributes include flexibility, recovery, and adaptation

Defining Survivability

Ability of a system to **minimize the impact of a finite disturbance on value delivery**, achieved through either the satisfaction of a minimally acceptable level of value delivery during and after a finite disturbance or the reduction of the likelihood or magnitude of a disturbance

Castet et al., 2008

