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Human exploration of deep space will require Environmental Control and Life Support 
Systems of increasing robustness as mission duration and distance from Earth increase. As 
crews travel to distant unexplored environments, designers will need heightened confidence 
in life support availability under increasing levels of uncertainty and risk. Variation in system 
performance, environmental conditions, resource consumption, waste generation, and even 
mission characteristics will lead to unexpected responses, increased likelihood of failures, and 
even design obsolescence. The cost of system failures will also rise, due to launch mass and 
volume constraints, time and cost of resupply, and reduced ability to abort to Earth. If not 
accounted for early in design, the increased risk and cost of uncertainty might preclude human 
deep space exploration. This paper is the second in a series addressing the topic of robust 
ECLSS design.  The first paper defined ECLSS robustness and discussed distinctions between 
robustness, reliability, resilience, and survivability. This prior work defined ECLSS 
robustness as “the ability to maintain habitable conditions for crew survival and productivity 
over the mission lifetime under a wide range of conditions.” This wide range of conditions 
includes ordinary usage, temporary environmental disturbances or disruptions (both foreseen 
and unforeseen), and sustained changes in the system or mission context. ECLSS robustness 
must be quantifiable for design evaluation, comparison, improvement, and optimization. A 
robustness metric should address spacecraft habitability, not just crew survival; apply to all 
levels of system abstraction (component level to system level); apply to all design phases or 
levels of fidelity (conceptual through detailed design); be practical for use, relevant, and 
objective; and be compatible with existing assessment tools and all technology types. In this 
second paper we review several potential methods for quantifying robustness and propose an 
ECLSS robustness metric for future use in design evaluation and improvement. 

Nomenclature 
α = sensitivity 
β  = slope of dynamic process function 
γC = Cornell’s safety index 
Δ = tolerance range 
η = signal to noise ratio (Taguchi) 
λ = constant failure rate  
Λ = load variable 
µ  = mean of y 
ρi = susceptibility index 
σ = standard deviation 
σe

2 = mean square deviation from target value 
ϕ = probability density function 
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ω = weighting factor 
BVAD = Baseline Values and Assumptions Document 
CP = process capability index 
Cpk = alternate process capability index 
CF = Control Factor 
D = A set of damage states given an exposure 
DDT&E  = Design, Development, Test, and Evaluation 
D/T = System resistance to degradation 
E = strength 
ECLSS = Environmental Control and Life Support System 
ESM = Equivalent System Mass 
ESMЯ = Robustness normalized ESM 
Ex =  a set of hazard exposures 
Fi = maximal (worst case) value of the system response 
f(t) = failure probability density function 
F(t) = probability unit fails by time t 
FMEA = Failure Modes and Effects Analysis 
FR = Functional Requirements 
FTA = Fault Tree Analysis 
H = Habitability Index for ECLSS 
HIDH = Human Integration Design Handbook 
HR = ECLSS Robustness Metric  
h(t) = instantaneous rate of failure for survivors at time t (from reliability engineering) 
I = information content 
ISS = International Space Station 
KPC = Key Product Characteristic 
L(y) = Quality loss given system response y 
LH = habitability loss 
LCC = Life Cycle Cost 
LEO = Low Earth Orbit 
m = target value of key product characteristic y  
M = input signal to a dynamic process 
MIMO  = multiple-input and multiple-output  
MTBF = Mean time between failures 
MTTF = Mean time to failure 
NF = Noise Factor 
p = probability  
Pr = robustness index based on quality loss and information content 
PRA = Probabilistic Risk Assessment 
Q = Average quality loss over all potential values of y 
R(t) =  Reliability or survival function 
Я = A robustness metric 
ЯH = ECLSS robustness metric 
RDM = Robust Design Methodology 
S = size of white noise disturbance (for ρi) 
SI = Sensitivity Index 
SNR = Signal-to-Noise Ratio 
t = Time   
tMC = time average performance degradation 
VMEA = Variation and Modes Effects Analysis 
VRPN = Variation Risk Priority Number 
x = inputs or design parameters controlling or impacting y 
y = key product or process response, a.k.a. KPC 
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I. Introduction 
HE one common objective of any environmental control and life support system (ECLSS) for human spaceflight 
is to maintain an environment “suitable for the well-being of men and systems during the mission” in an isolated 

volume.1  The ECLSS purpose is to maintain the habitability of the spacecraft.  It must provide for the crew’s needs, 
in order to keep them alive (at a minimum) and preferably enable them to be healthy, happy, and productive (to achieve 
mission objectives).2  Beyond this commonality however, there is no one-size-fits-all ECLSS for human space 
exploration.  The specific functional, performance, and operational requirements for ECLSS design are derived from 
mission characteristics (duration, the number of crew, destination environment, and mission objectives).  The primary 
drivers of ECLSS design are the crew’s metabolic inputs and outputs (to which the ECLSS provides a counterbalance), 
environmental conditions (largely determined by mission destination), and mission objectives (dictating the duration, 
return time to Earth, ability to resupply, and crew activities).  The crew consumes resources (food, oxygen, and water) 
and produces waste (CO2, humidity, heat, urine, feces, trace contaminants, trash, etc.).  In addition to metabolic needs, 
the crew requires protection from a hazardous space environment characterized by extreme temperatures, high 
vacuum, micrometeoroids, reduced gravity, and high levels of cosmic or solar radiation.  Other mission characteristics 
that might constrain the ECLSS design include allowable mass and volume, expected frequency of extravehicular 
activity, expected crew workload, surface operations, and distance from Earth for return or abort.   

The ECLSS must first satisfy the physiological needs of the crew by regulating the atmosphere, providing potable 
water, and removing hazards posed by wastes.  The next level of priority is to provide for crew safety, comfort, and 
well-being with food, safety infrastructure, mental and physical health countermeasures, and other human factors 
accommodations.  The primary ECLSS elements are atmosphere management, water management, waste processing, 
food supply, safety, and crew accommodations.  Though crew accommodations have not typically been included as 
an ECLSS element we encourage its future integration into ECLSS design and evaluation.  Psychological and 
physiological countermeasures affect crew wellbeing, reduce the risk of illness and injury, and ultimately improve 
spacecraft habitability.  Several NASA references define specific performance requirements, baseline values, and 
constraints for these elements, including the Human Integration Design Handbook (HIDH),3

 the NASA Spaceflight 
Human System Standard,4 and the Life Support Baseline Values and Assumptions Document (BVAD).5 The variety 
of technology options available to provide ECLSS functions have evolved significantly since the beginning of human 
space exploration, especially in the areas of atmosphere revitalization and water recovery. Technology has evolved 
over the last 50 years towards regenerable or recycling systems that sustain a habitable environment for longer 
durations, with less resupply mass.   

II. The Need for Robust ECLSS Design 

A. ECLSS Architecture Development and Optimization 
An ECLSS architecture might include many different combinations of technologies that fulfill the functions of 

atmosphere revitalization, metabolic waste removal, and the provision of food and water.  The difficult question facing 
exploration ECLSS architects is how to optimize for the performance and cost effectiveness necessary for mission 
success.  The best architecture is not necessarily a collection of the most individually efficient components, but a 
collection of components that work together in an optimal way.6  Optimization processes attempt to find the best 
possible design solution amongst all available solutions.7  Several studies have demonstrated the use of optimization 
algorithms for ECLSS technology trades, configuration comparisons, and system sizing.8,9,10,11,12,13,14  When more 
than one design option meeting all requirements is available, soft constraints, known as objectives, guide architectural 
comparisons.  These objectives, often referred to as ‘-ilities’, reflect the ability of the system to meet the users’ needs 
and expectations (e.g. reliability, maintainability, useability, availability, etc.). Typically, objectives address system 
effectiveness and its cost, to varying degrees.  However, cost and effectiveness criteria usually conflict, requiring 
multi-objective optimization techniques.  For ECLSS evaluation, analysts must first define successful operation as 
well as cost.  ECLSS architecture trades typically compare mass, reliability, and closure.  For long missions stored 
consumables, levels of closure, and spare parts to improve reliability are major drivers of system mass.15,16  Ref. 17 
provides a detailed discussion of the most common ECLSS performance metrics, which include equivalent system 
mass (ESM), life cycle cost (LCC), closure, stability, and reliability.   

B. The Cost of Uncertainty in ECLSS Design 
The top technical challenges for human spaceflight beyond low Earth orbit (LEO) are to create safety 

infrastructure, autonomous operational strategies and systems, highly reliable and maintainable systems, and robust 
systems to deal with the unexpected.18,19  As crews travel to distant unexplored environments, mission designers will 

T 
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need heightened confidence in life support functionality under increasing levels of uncertainty and risk. To meet the 
demands of long duration life support, ECLSS technology will undoubtedly become more complex and have longer 
operational life spans.  As system complexity and life spans increase, the likelihood of encountering variability 
(intrinsic or extrinsic) also increases.  Uncertainty in things like component reliability, the environment, or crew 
metabolic loads rises with mission duration and distance from earth, making traditional reliability analysis difficult.  
In order to develop robust systems, characterization of the unexpected is a necessary first step.  

Uncertainty is the result of not having accurate or sufficient knowledge of a situation.20  Types of uncertainty 
might include the probable (frequent and foreseen, statistically characterized events with relatively low impact); the 
possible (foreseeable events that occur less frequently but have higher impact); or the plausible (very infrequent, 
potentially high impact rare or “black swan” events that may be unforeseeable by subject matter experts).  Uncertainty 
may be aleatory (irreducible randomness) or epistemic (reducible uncertainty due to limited knowledge). Uncertainty, 
in the natural and engineered environment, is inherent in space exploration, making theoretical reliability analysis 
difficult.21 That does not mean however, that designs cannot accommodate the unknown.  Designers can bound 
realistic possible ranges of environmental conditions, or types of rare events to predict their impact on ECLSS 
performance. Ref. 17 itemized some potential sources of uncertainty to consider in ECLSS design, summarized in 
Table 1.  For example, component failure rates come from limited test data and are themselves stochastic values.  
Component behavior within the system also may vary, especially for low TRL technologies that have not been well 
characterized. There may be unanticipated adverse effects of the space environment, like radiation or reduced gravity. 
Many of these effects can only be observed through long duration flight testing. As exploration missions take 
spacecraft into less traversed environments, the likelihood of unexpected environmental variability and rare events 
(such as a solar storm) increases.    

 
Table 1 Sources of uncertainty in ECLSS design. 

Component 
Performance  Failure rates, process rates, resource requirements, environmental effects 

System Definition  Model uncertainty, component interactions, dynamic/transient processes 
Metric Uncertainty  Formulation, assumptions, diligence in calculation 

Operating Environment  In-flight use, boundary conditions, external environment, disturbance events, 
operator error 

Mission Characteristics  Duration, resupply intervals, crew size, science objectives, etc. 
 
Failures generate costs, and those costs increase the later they occur in the product life cycle.   Strategies to reduce 

failures also come at a cost.  Together, the cost of failure plus the cost of failure prevention is known as the cost of 
quality.   For space life support, increased uncertainty may result in unanticipated system behavior, increasing the 
likelihood of component faults, system failure, or even design obsolescence.  The cost of safety critical system failures 
(which may include loss of crew) and the cost of their prevention rise with mission distance and duration, due to 
launch mass and volume constraints, time and cost of resupply, and reduced ability to abort to Earth. 22   Ref. 23 and 
Ref. 24 caution that future life support system complexity (large mix of technologies with large variety and numbers 
of components) will lead to lower reliability and higher maintenance requirements than other systems.   However, 
ECLSS performance to date falls short of the extreme reliability requirements evidenced by actual failure rates as well 
as on-board maintenance requirements.25,26,27,28 Due to the increased uncertainty and risk of deep space exploration 
missions, the ability to maintain function in abnormal, off-nominal conditions as well as nominal conditions is 
increasingly important.29,30  A plethora of design objectives (or ‘-ilities’) exist in industry, related to performance 
under uncertain conditions, most of which suffer from inconsistent or indistinct definition.31  However, literature 
reveals four emergent characteristics that best describe system effectiveness in a dynamic uncertain environment:  
robustness, reliability, resilience, and survivability.  Ref. 17 proposed that robustness is an over-arching characteristic 
that captures reliability, resilience, and survivability. The objective for ECLSS performance should expand beyond 
reliability, to robustness, in order to reduce the cost and risk of uncertainty for deep space exploration.17 

III. A Robust Design Methodology for ECLSS  

A. Robust Design Definitions and Concepts 
In technical literature, definitions of robustness for engineering systems vary widely,17 but all include the notion 

of insensitivity of system performance to variation.   Robust products are less sensitive (in terms of variation of product 
performance objectives) to environmental effects, deteriorative effects, and manufacturing imperfections.32 Robust 
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processes make more uniform products despite variation of input variables.33  A robust design “has a smaller deviation 
from a specified target value than other designs considered”34 and maintains function against anticipated internal and 
external perturbations.35  Since failures are typically caused by variation, robust designs are inherently more reliable 
by avoiding failure despite the presence of noise.34 IEEE defines robustness as “the degree to which a system or 
component can function correctly in the presence of invalid inputs or stressful environmental conditions.”36 
Robustness is particularly important, yet not well understood, in the context of space systems.37 Ref. 38 suggests that 
the exploration of space system architectures “through the lens of uncertainty” may change the way designers think 
about conceptual design and how to select design alternatives to pursue.   

“Often [spacecraft] systems are forced to operate under conditions which deviate significantly 
from ideal design conditions. A degree of how well a system performs with no appreciable 

degradation in performance under such conditions is measured by its robustness.”39  

Ref. 17 proposed the concept of robustness “to characterize and improve ECLSS performance,” suggesting that, 
“ECLSS robustness encompasses all aspects of its mission effectiveness.”  Given that the purpose of ECLSS is to 
maintain habitability of the spacecraft environment, Ref. 17 defined ECLSS robustness is its ability to maintain 
habitable conditions for crew survival and productivity over the mission lifetime under a wide range of conditions. 
This wide range of conditions includes ordinary usage, temporary disturbances or disruptions, and longer term, 
sustained changes in the system or mission context.  Ref. 17 discussed definitions of and distinctions between 
reliability, resilience, robustness, and survivability in detail. The authors proposed that reliability, resilience, and 
survivability are actually three separate system characteristics contributing to ECLSS robustness. Ref. 17 suggested 
that reliability engineering typically accommodates only expected random failures and conditions (i.e. those that are 
foreseen and likely to occur); resilience accommodates foreseen but unexpected (i.e. less probable) deviations in 
conditions or disturbance events, and survivability accommodates unforeseen adverse events (unknown unknowns). 
Robustness can be achieved or improved by increasing any of these three contributors. Each of these characteristics 
has varying applicability, effectiveness, and cost depending on the mission circumstances.  Figure 1 depicts reliable, 
resilient, and survivable as three distinct layers of robustness across a continuum of uncertainty.     

  
 Figure 1. Characteristics contributing to robustness.17 
 
A Quality Characteristic (a.k.a. Key Product Characteristic) is 
the product or process response (y) that is observed for the 
purpose of evaluating robustness. Quality loss occurs when y 
deviates from some nominal target value m.  A system’s 
performance (y) can be described as a function of variables (or 
factors).  Signal factors are the input variables that specify or 
control the product or process response; control factors (CF) are 
design parameters set to optimize the product response; and noise 
factors (NF) are variables which impact the product response but 
cannot be controlled by the designer.40  Both control and noise 
factors influence the translation of inputs (or signals) into the intended response.  In quality engineering, a parameter 
diagram (a.k.a. P-diagram), shown in Figure 2, is used to visually depict process signals, control factors, noise factors, 
and responses. Design margin and safety factors have been historically used to achieve robustness for space systems, 
however NASA crewed system programs don’t have formal margin policies.39  Worst case tolerancing is also a 
common method to protect against variation. However, as the number of inputs increases, the degree of over design 
by worst case tolerancing increases. For example, the likelihood of a part being produced with 20 tolerances all at the 
edge of tolerance limits is highly unlikely.  Robust design is recommended as a less costly means of increasing the 

Figure 2. Parameter diagram. 
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tolerance or ability to operate in a wider range of conditions.  Designs with 
reduced sensitivity to all types of noise avoid the use of “noise 
reduction/compensation technology” and allow the use of lower grade 
components and materials.40 The fundamental principal of robust design is to 
minimize the effects of variation without eliminating the causes,34,40 thereby 
improving product quality.  This is depicted graphically in Figure 3.  Minimizing 
sensitivity to noise means minimizing the slope of input variables or design 
parameters (x) versus system response y.   This is done by selecting designs (or 
set of design parameters) for which the quality characteristic (y) has the least 
sensitivity to variation sources.33,34,40 To do so, the designer must understand how 
input variability propagates through the system resulting in response variability, 
typically through what is known as a system model or transfer function.33,34 

B. Evolution of Robust Design Practices 
Taguchi’s Robust Design for Quality Engineering: Taguchi’s robust design process is synonymous with robust 

design in much of the engineering literature.  Taguchi breaks up the design process into three phases: 1) System design, 
during which architectural concepts and technology choices are made; 2) Parameter design, when individual system 
parameter values are chosen for design components; and 3) Tolerance design, when component tolerances are set to 
further minimize the effect of noise.  Taguchi suggests that parameter design is the most important phase for achieving 
robustness.32 In this phase, experimental data is used to determine the effects of control factors on quality 
characteristic, y, under expected environmental usage variation (imposed during the experiment).32,40,41 Optimal 
control factor levels are then chosen that maximize the signal-to-noise ratio (SNR), a robustness metric pioneered by 
Mr. Taguchi.   In communications, SNR is a measure of a signal strength relative to the noise floor.  In quality 
engineering, it is the ratio between ideal performance (m) and deviation from that ideal performance (y-m).  Taguchi  
pioneered the use of SNR as a robustness metric, since “the higher the ratio, the less harm variations cause to the 
system.”32 In the Taguchi robust design process, the design is first optimized for SNR, and then control factors are 
chosen to bring the average system performance closer to the target value m.  This idea is predicated on the existence 
of control factors that can affect the mean of y with little effect on SNR.  Some practitioners reverse this approach by 
first optimizing for maximum expected performance, max(E(y)), and then optimizing for minimal sensitivity to 
variation, max(SNR).35  After design parameters (or control factors) are optimized, such that quality loss cannot be 
reduced any further, then the designer should consider ways to reduce or control noise factors.33,40,42,43 This is known 
as tolerance design in manufacturing, and tends to be a much more costly means of reducing variation induced quality 
loss.  Many authors argue that robust design should also be considered during early concept development to identify 
solutions that avoid noise factors and their associated failure modes all together or reduce their impact.34  The concept 
of robust design has evolved over the last 30 years since Taguchi’s first publications on the subject, but most 
approaches are mathematical variations of the same theme, including: 

Statistical Process Control: Statistical process control methods involve the measurement and control of production 
variability relative to the allowable process spread (or tolerance) using process control charts and a process capability 
index.44  Essentially, these methods evaluate the likelihood of a product being out of tolerance.    

Statistical (or Probabilistic) Robust Design:  Many authors33 view a robust design as one for which system 
variability is minimized, subject to other performance or design constraints.  Similar to the Taguchi method, design 
parameters are chosen that minimize variation in y. In contrast to the Taguchi method, performance variance is often 
estimated via error propagation through a mathematical system model, instead of being measured experimentally.  

Robust Design Optimization: These methods use optimization routines to search a defined design space for 
solutions that either minimize variance, minimize distance of the mean y from target m, or some weighted combination 
of the two (through multi-objective optimization).   

Axiomatic Design: Axiomatic design, proposed by Ref. 45, is an excellent robust design method to use during the 
conceptual design phase,46,47,48 especially for reliable, cost-effective space life support systems.49 This design 
approach consists of two axioms.  First, the independence axiom is to maintain the independence of design parameters 
that satisfy functional requirements (FR), making the design controllable and uncoupled.  Second, the information 
axiom is to minimize information content of those designs meeting the independence axiom. Information content is 
log2(1/p), where p is the probability of success, or portion of the system performance that overlaps with the desired 
performance range, shown as the hatched area in Figure 4.  To do so, both the bias (mean y minus target m) and 
performance variation must be small.  To minimize the response variance, sensitivity coefficients can be reduced, 
increasing stiffness and allowing a larger variance in control factors. Next, design parameters are chosen that minimize 

Figure 3. Robust performance. 
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the response bias, similar to the Taguchi 2-step method.  The 
first axiom of Axiomatic design (choosing design parameters 
to achieve functional independence, or an uncoupled design) 
is what really differs from Taguchi design.47  Information 
content for a system (of multiple functional requirements) is 
the sum of information content of individual FRs in an 
uncoupled design. For coupled designs, information content 
calculation is more difficult, but several methods, such as 
conditional probability, have been proposed.47   

Robust Design Methodology: Many authors advocate an 
overall methodology for robust design rather than a specific 
procedure or mathematical definition.34 Ref 50 defines 
Robust Design Methodology as “systematic efforts to 
achieve insensitivity to noise factors,” based on four 
common principles: awareness of variation, insensitivity to 
noise factors, application of various methods, and 
application in all stages of the design process.51 Similarly, 
Ref 52 defines robust design as: a methodology aimed at 
finding the best possible combination of design parameters, making the product performance as insensitive as possible 
to the influence of NFs.” Regardless of what defines performance (y) and what optimization objective (i.e. robustness 
metric) is chosen, the following steps are inherent in robust design, and necessary to practicing Robust Design 
Methodology (RDM).   

1. Specify key product characteristics (KPC) 
2. Specify variation: Identify and characterize variation sources 
3. Specify the system: Estimate variation effects on system performance y  
4. Quantify robustness: Calculate a robustness metric, using results of (2) over one or more design alternatives, 

where the metric quantifies the deviation of y from some defined target or ideal performance. 
5. Select or improve design: Analyze results of (3) to optimize or improve the design’s robustness, by reducing 

effect of noise factors on KPCs (sensitivity); reducing bias (distance of mean y from target); or reducing noise.  
To determine sensitivity to variation, designers must first identify variation sources that may impact system. 

performance, and if possible characterize their magnitude, spread, and distribution shape.  The fidelity of variation 
characterization will depend on the amount of information available for a particular variation source.  While some 
noise sources may have known probabilistic parameters, other rare extreme events (unknown unknowns) may only be 
quantifiable on a relative magnitude scale. Next, the designer must understand how potential input variability 
propagates through the system.  If known, the mean, variance, and sensitivity of the response variable across the 
characterized variation sources can be estimated analytically with a mathematical system model (or transfer function), 
through simulation with a physical or mathematical system model, or experimentally with test or actual usage data.  
These values are then used to quantify robustness through a defined metric.  Several metrics have been suggested in 
literature which are described in Section IV.  Mean and variance estimates of response y can also be used to predict 
failure rates (for reliability) if a failure threshold is known.  Finally, the prior analyses results are used to optimize or 
improve the system design.   

C. A Proposed Robust Design Methodology for ECLSS  
ECLSS robustness includes the ability to maintain habitable conditions for crew survival and productivity over 

the mission lifetime under a wide range of conditions.17 In order to apply a Robust Design Methodology to 
environmental control and life support, we must first define what it means to be ‘habitable’, what it means to ‘maintain’ 
habitability, and what ‘wide range of conditions’ might occur.  We propose the following Methodology for Robust 
ECLSS Design.   
1. Quantify Habitability: Based on our definition of robust ECLSS, habitability of the spacecraft is the KPC to be 

optimized.  We suggest the establishment of a Habitability Index (H) that is a utility function of contributing factors 
(such as O2 availability or total pressure).  The Habitability Index is discussed further in Section V.     

2. Characterize Uncertainty (NFs): Noise includes potential variation in process inputs and operating conditions, as 
well as the probabilities of component or subsystem failure (reliability), recovery or repair (resilience), and 
survival, in the event of a catastrophic failure.  This task will require input from subject matter experts within the 
bioastronautical science and engineering community and should include analysis of historical ECLSS data.   

Figure 4. Information content based on probability 
density function for system performance.47 
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3. Evaluate Sensitivity to Noise:  This step requires ECLSS definition, in the form of mathematical or physical 
models, to predict or observe effects of NFs on ECLSS performance, and thus on habitability.        

4. Calculate ECLSS Robustness: Utilize information from steps 1-3 to calculate an ECLSS Robustness Metric, ЯH, 
defined in Section V.  ЯH can be used to compare robustness of alternate designs, or to improve an existing design.   

5. Design Improvement:  
a) Using the results of step 4, identify design features or noise factors contributing most to habitability loss.   
b) Identify potential design improvements targeting those factors, through axiomatic design principles, and a 
defense-in-depth type design strategy (discussed in Section V), which is a strategy for systematically evaluating or 
implementing design changes to improve sensitivity, reliability, resilience, and survivability, in that order. 
c) Implement design improvements with the minimum cost of quality (minimum ESMЯ, defined in Section V).   
This Methodology for Robust ECLSS Design embraces and builds upon established engineering approaches to 

coping with uncertainty including the disciplines of quality, reliability, resilience, and survivability engineering.  It 
should be implemented iteratively throughout the project life cycle (concept development, to detailed design, to real-
time, operational use).  The methodology can be applied with a level of rigor (with respect to data, mathematical tools, 
and techniques) that is appropriate for the ECLSS design fidelity (i.e. design phase). It can also be applied at any level 
of abstraction (component, subsystem, or fully integrated system level).  The sections that follow focus on 
quantification of habitability and of ECLSS robustness (items 1 and 4) and conclude with a brief discussion of the 
other process steps and future considerations for implementation.   

IV. Quantifying ECLSS Robustness 

A. Reliability Definitions and Concepts 
The objectives of reliability engineering are to prevent or reduce likelihood or frequency of failures, identify and 

correct causes of failures, determine ways of coping with failures that do occur, and estimate reliability of new 
designs.53 Reliability is “the probability of a system or system element performing its intended function under stated 
conditions without failure for a given period of time.”20  Reliability is quantified with a failure probability density 
function, f(t), representing the probability of failure at time t.  Unreliability, quantified by the cumulative failure 
distribution function F(t), represents the probability that a component fails before time t, calculated as the integral of 
f(t) until time t.  Conversely, the probability that a non-repairable unit survives past time t is known as the reliability 
function (or survival function), represented by R(t), equal to 1-F(t).  A hazard rate, h(t), also known as failure rate, is 
the instantaneous probability of the first and only failure at time t, given the unit survived to time t. The hazard rate is 
equal to f(t)/R(t).  The mean time to failure (MTTF) or mean time between failures (MTBF) are the average amount of 
time that a unit is expected to operate before failure for non-repairable and repairable systems, respectively.  For units 
with constant failure rate λ, MTTF and MTBF are equal to 1/λ.  Reliability prediction methods include life data 
analysis (curve fitting of field data), load/strength interference analysis, knowledge of failure mechanisms (physics of 
failure), systems reliability models (or reliability block diagrams), fault tree analysis (FTA), state space or Markov 
analysis, or Petri Nets, to name a few.  

B. Resilience Definitions and Concepts  
The word resilience derives from the Latin verb resilire, meaning “to rebound, jump back, or recoil.”  The 

definition of resilience in the context of engineering varies widely in the literature.  As a result of the ambiguities, 
ideas on how to measure, assess, and design for resilience also conflict.  The concept of resilience as an emergent 
system property arose from the field of ecology more than 45 years ago, defined then as “the amount of disturbance 
that a system can withstand before it shifts into an alternative stable state.”54  Ref. 55 identifies the most common use 
of the word across a range of disciplines as “the ability of an entity or system to return to normal condition after the 
occurrence of an event that disrupts its state.”  Herein, a disturbance is defined as an event with the potential to disrupt 
the system state, such as an external deleterious occurrence (e.g. micrometeoroid impact), or an internal component 
failure.  Resilience includes the following attributes, representing components of a system’s response to a disturbance. 

1) Resistance (or Vulnerability): Degree to which system function degrades as a result of a disturbance 
2) Recoverability: A combination of 1) ability or degree to which the system performance returns to its pre-

disturbance state; and 2) the period of time that it takes to recover to the original state (or better).    
3) Flexibility: The magnitude of disturbance that the system can tolerate without unrecoverable failure.  It 

represents how far the system performance can degrade without a loss of minimum function.   
4) Adaptability: The ability or capacity to change or adapt to new circumstances without catastrophic loss of 

function, in order to mitigate the consequences of future disturbances.  
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5) Detection and Avoidance: Some texts include the abilities to anticipate, detect, and avoid an impending 
disturbance as a component of resiliency.56  There may be early warning signals that can predict an imminent 
disaster so that it can be averted.57 

Ref. 58 provides an excellent review of articles related to resilience quantification across multiple disciplines.  
Mathematically, a system’s response to a disturbance has several distinct characteristics that can be quantified from a 
time series of that system’s performance, depicted graphically in Figure 5, and described below. Similar to robust 
design, resilience quantification requires the definition of a key performance characteristic (y).   

Survival: The ability to maintain functionality after a disruption can be quantified as the passive survival rate 
(reliability) plus the proactive survival rate (probability of restoration).  The probability of restoration is the joint 
probability of system failure, failure identification, correct prognosis, and successful recovery.59  

Vulnerability: Also called system health, vulnerability can be quantified as the total magnitude of function loss or 
degradation after a disruption.60  Alternatively, it is calculated as the degradation magnitude as a percentage of the 
pre-disruption functionality, or the fraction of subsystems damaged after a disturbance.61,61,62 

 
Figure 5. System performance and state transition to describe resilience from Ref. 63. 

Degree of Return: After the system has fully recovered (has reached a stable state of functionality) it may not ever 
reach its original pre-disturbance health.  The degree of return is the extent to which functionality is restored after 
recovery, i.e. post-recovery function divided by pre-event function.64,65,66 Similarly, Ref. 60 quantifies resilience as 
the portion of performance recovered from the disrupted state. 

Recovery Time: Also known as return time or restoration time is the time taken to return to a stable level of 
functionality after the disturbance event time. 61,64 Since the system may not return to its original state, the return time 
is not necessarily the time to return to pre-event functionality.   

Probability of Recovery: The probability of recovering from a disturbance in a single time step.67 
Integral functional loss, also called efficiency64 is the area above the functional response curve (like that shown in 

Figure 5) from the beginning of the disruptive event to the time of full recovery (or to the end of some operational 
period of interest).  The Resilience Triangle model assumes a linear recovery rate and an immediate performance loss 
after the event, such that the total functional loss is estimated as a triangle.68,69  Conversely, many authors propose that 
a metric of resilience is simply the system performance (as a percentage of nominal or target performance) integrated 
over time.70,71,72,73  

Recovery Rate: This is the change in function per time during the recovery phase, also known as return rate. 61,64  
Resistance (Absorbing Capacity): The resistance of the system to degradation after a disturbance (or its absorbing 

capacity), is the average functional degradation rate over time.61 The capability to absorb adverse effects given a 
certain magnitude event or external disturbance can be calculated as:61  

 D/T = -10log10(time averaged performance degradation/disturbance magnitude) (1) 

This concept is very similar to the process capability index utilized in robust design (discussed later in this paper), 
representing the distance from target performance, normalized by variation in conditions.    
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C. Metrics of Robustness  
Since robust design is concerned with improving product quality and decreasing cost of quality loss, a measure of 

product quality is needed to evaluate the effect of changing design parameters on the product’s performance.  
Commonly, quality is measured as the fraction of units manufactured that are defective, i.e. falling out of a defined 
tolerance.  However, this implies all products falling in tolerance are equally ‘good’.40  In reality, even if a product is 
in tolerance, its quality may decrease in the eyes of the user if its value deviates from ideal performance.  This 
performance deviation can create economic loss, such as reduced sales.  Several metrics have been proposed to 
quantify deviation from target performance due to sources of variation, which can be used as objective functions for 
robust design optimization.  These metrics are summarized below.   

1. Variance (or Dispersion)  
Many authors view a robust design as one for which system variability is minimized, subject to other performance 

or design constraints.33  Variance is a key component in all potential robustness metrics, and in some cases the only 
component to be optimized.  Therefore, it is necessary to understand how nominal input values and the variability in 
inputs affect the variability in y, so that var(y) can be minimized.  Variance can be estimated from 1) a sample of 
observations, 2) from a known probability distribution for y, 3) from a system model, f(x) and known co-variance of 
x, or 4) from system model f(x) and known joint probability distributions of x.  The most common method is Taylor 
Series Approximation, based on the method of moments, using a system model and estimates of input variance.   

2. Effective Fitness 
Conversely, some authors propose that robustness can be achieved by optimizing the system performance (i.e. the 

expected value of y) subject to a constraint on acceptable output variance.  In this case, the typical objective function 
to be optimized is the expected value of y, or E(y).  This metric falls in the more general category of what are called 
fitness functions, commonly used in genetic algorithms, which indicate how close a design solution is to achieving 
target performance.74  Just as with variance, E(y) can be estimated from a sample of observations, from a known 
probability distribution for y, from a system model using Taylor Series Approximation, or from a system model and 
known probability distributions for inputs x.     
3. Robust Counterpart Approach (Worst Case Philosophy) 

Ref. 74 suggest the ‘robust counterpart approach’ based on ‘minimax’ optimization concept, used in Chebyshev 
approximation.  This approach is similar to optimizing the expected value of y, but considers local variation in the 
design parameters in the optimization. The idea is to find design parameters x that minimize Fi, where Fi is the maximal 
(worst case) value of the system response function f(x) in an interval around design point xi.  Similarly, some authors 
have suggested the difference between the maximum and minimum of response function f(x) as the robustness index.47 
4. Process Capability Index 

The process capability index (Cp) is commonly employed in quality control for manufacturing processes that are 
normally distributed.  It is the ability of a process to perform within stated specification limits,44 measured as the ratio 
of allowable process spread to actual process spread. Many authors propose quantifying robustness in terms of Cp.  

  𝐶𝐶𝑃𝑃 = Δ
6σ

 (2) 

where standard deviation (σ) is that of the product or process response function, and tolerance (Δ) is the difference 
between the upper (m2) and lower (m1) allowable values of performance objective y, assuming that E(y) is on target 
(m).    Ref. 33 defines an alternative process capability index, called Cpk, to use when E(y) is not on target. Cpk is the 
minimum distance to the tolerance limits divided by the spread of the of the output function.75,76 Ref. 34 suggests the 
Cornell reliability index, 𝛾𝛾𝐶𝐶, as a robustness measure that represents the distance to a failure mode, based on load and 
strength distributions, commonly employed in reliability analysis.  Ref. 37 also recommended a load-strength metric 
for use in space system applications, where “strength” is a quantified measure of the system capacity to accommodate 
a given “stress”. Stress can be any environment or load variable that “infringes on the strength characteristic”.37   

5. Quality Loss 
The concept of quality loss, L(y), introduced by Taguchi,32 represents the financial loss of objective function y 

deviating from its target value m.  Through Taylor Series expansion, L(y) can be represented by Eq. (3): 

 L(y) = k(y-m)2 (3) 

where k is the cost of the defective product (A) divided by the square of tolerance around m (Δ2). Given Eq. (3), 
the average quality loss over all values of y, denoted Q, becomes: 
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 Q =E(L) = k[(μ-m)2 + σ2] = kσe2 (4) 

where μ and σ2 are the mean and variance of response y, respectively, and σe
2 is the mean square deviation of the 

product objective function from its target value.  Notice that the average quality loss consists of two components:  
deviation of mean y from its target, called bias,77 and the mean squared deviation of y around its own mean. Similarly, 
Ref. 78 proposed a worst-case sensitivity index that is the root mean square difference between y at worst case 
combinations of design variables (yi) and the target value m of response variable y.    

 SI =  �1
𝑛𝑛

∑ (𝑦𝑦𝑖𝑖 − 𝑚𝑚)2𝑛𝑛
𝑖𝑖=1  = �𝑄𝑄 (5) 

Q could also be calculated probabilistically with an event tree, based on potential disturbance events that could disrupt 
or degrade y.  The quality loss for an event is the probability of its occurrence times its consequence.  For example, 
given a set of possible disturbance events or ‘exposures’ (Ex), the potential damage states that could result (D), and 
the consequence or quality loss (L) incurred as a result of that damage state, then the average quality loss becomes  

 Q =  ∫ ∫ 𝐿𝐿 ∗ 𝑝𝑝(D|𝐸𝐸𝐸𝐸) ∗ 𝑝𝑝(𝐸𝐸𝐸𝐸)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝐸𝐸𝐸𝐸 /n      (6) 

Where p is a probability distribution and n is the number of leaves on the event tree (number of exposures times the 
number of damage states).  This method assumes independence of the exposure that causes damage from the failure 
probability.79  If the exposure events are not independent, a joint probability distribution could be used instead, i.e. 
p(Ex∩D), which is p(D|Ex)*p(Exp).  Note that this is conceptually similar to probabilistic risk assessment (PRA). 
6. Sensitivity 

 Deterministic sensitivity analysis is a gradient based method to determine the effect of input changes on the system 
response, typically using 1st order Taylor Series approximation, given a defined system model, f(x).  The goal is to 
minimize sensitivity coefficients, which are the partial derivatives of response function f with respect to input noise 
variables near a reference point.74  If f(x) is non-linear, the designer can then choose values of control factors 
(controllable design parameters) to minimize the sensitivity coefficients, allowing for wider tolerances, lower grade 
materials, and a more variable operating environment.40 A sensitivity measure based on the Jacobian matrix of f(x) 
can be used to minimize sensitivity in multiple input multiple output (MIMO) problems.80,81,82,83,84 

In contrast to deterministic gradient based methods, probabilistic sensitivity analysis employs information from 
the statistical distribution of the input variables. Three categories of probabilistic sensitivity analysis (PSA) are:85 

Variance based methods that decompose the total output variance into variation sources.  In general, a variance-
based sensitivity index is the total variance in y due to an input variable xi (Vi), including main and interaction effects, 
normalized by total y variance (V). Other variance-based methods include Fourier Amplitude Sensitivity Test (FAST) 
and Sobol indices. Variance-based methods utilize 2nd moment estimates of variance and may not accurately measure 
dispersion for responses with high skewness or kurtosis.85  Also, these methods only apply globally, not allowing 
analysis of performance over a local region of the response distribution.85   

Probabilistic characteristic methods evaluate the change of output probabilistic characteristics (such as mean, 
standard deviation or failure probability) as a result of changes in the probabilistic characteristics of inputs (e.g. 
∂µY/∂µX,  ∂σY/∂σXi, or ∂Pf/∂PXi).  These methods also apply to local optimization problems.  Ref. 85 describes Wu’s 
sensitivity coefficient, which estimates the impact of input distribution parameters on the probability of failure.   

Entropy based methods: Ref. 85 suggests a third type of sensitivity measure, based on K-L (Kullback-Liebler) 
entropy that can be applied globally or locally.  This method defines the most influential inputs as those that create 
the largest change in the response probability distribution, p(y) when that input is set to a fixed value.   
7. Signal to Noise Ratio 

The signal to noise ratio (SNR), used in communications, is a measure of a signal strength relative to background 
noise.  It serves as a measure of sensitivity to noise and can have different forms, depending on the response variable 
of interest.  For example, in a dynamic process, an input signal M is ideally transformed into output y, as shown in Eq. 
(7).  In reality, y is a function of not only the input signal M but also several other uncontrollable noise factors {x1, 
x2,…xn} (Eq. 8).  Deviation of y from f(M) imparts quality loss, which can be estimated as the ratio between the ideal 
function and deviation from the ideal function, as shown in Eq. (9). Ref. 32 defines the signal to noise ratio, η, as a 
measure of robustness, since “the higher the ratio, the less harm variations cause to the system.”  
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 y = f(M) (7) 

 ŷ = f(M,x1,x2…,xn) = f(M) + [f(M,x1,x2…,xn) – f(M)] (8) 

 η = 
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

2

𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿1

2
𝜎𝜎𝑥𝑥12 + 𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿2

2
𝜎𝜎𝑥𝑥22 + … + 𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿𝛿𝛿

2
𝜎𝜎𝑥𝑥𝑥𝑥2

 (9) 

Ref. 32 notes two problems with the ratio defined in Eq. (9).  First, the error approximation in the denominator does 
not include all variation of the response due to noise (i.e. it is a first order Taylor series approximation of variance).  
Second, it requires knowledge of the exact function of system behavior.  Ref. 32 instead recommends an alternative 
formula for η, that can be evaluated empirically and, in the case of a dynamic process, simplified to Eq. (10), where 
σe

2 is the mean square error of the process from the ideal function and β can be calculated through a least squares fit. 

 η = 10𝑙𝑙𝑙𝑙𝑙𝑙10
β2

σ𝑒𝑒2 (10) 

 σe
2 =  1

𝑛𝑛−1
∑ (𝑦𝑦𝑖𝑖 − 𝛽𝛽𝑀𝑀𝑖𝑖)2

𝑖𝑖  and 𝛽𝛽 =  ∑ 𝑦𝑦𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖
∑ 𝑀𝑀𝑖𝑖

2
𝑖𝑖

 (11) 

For static processes, the calculation of η depends on what values of y are considered ‘better’, shown in Table 2.40   
 
Table 2 Alternate signal to noise ratios for static processes. 

Smaller the Better (Minimize y) η = −10𝑙𝑙𝑙𝑙𝑙𝑙10
1
𝑛𝑛

∑ 𝑦𝑦𝑖𝑖
2

𝑖𝑖                                                                                  (12) 
Nominal the Best (Target m)  η = 10𝑙𝑙𝑙𝑙𝑙𝑙10µ2/σ2                                                                                        (13) 

Larger the Better (Maximize y)  η = −10𝑙𝑙𝑙𝑙𝑙𝑙10
1
𝑛𝑛

∑ 1
𝑦𝑦𝑖𝑖2𝑖𝑖                                                                                    (14) 

Zero is Best (Target 0) η = −10𝑙𝑙𝑙𝑙𝑙𝑙10𝜎𝜎2                                                                                           (15) 
Fraction Defective (Minimize p) η = −10𝑙𝑙𝑙𝑙𝑙𝑙10

𝑝𝑝
1−𝑝𝑝

, where p is the fraction of defective units.                     (16) 

Similar to minimizing variance, the signal to noise ratio does not allow simultaneous optimization of the mean and 
variation. It is only effective when factors that influence the mean are separate from those that influence variance.47 
The performance target is reached by scaling design parameters after SNR has been maximized.  Also, note that η 
applies only to a single response variable. Multivariate η functions are still needed.44 

8. Aggregate Function of Mean and Variance 
Since there is typically a trade-off between mean performance of the system response and its variance, many 

authors recommend multi-objective optimization algorithms.  One option is to find Pareto optimal solutions that treat 
each as a separate optimization objective.  Another option, for a smaller the better type problem, is to minimize the 
expected value and variance of y in an aggregate objective function, incorporating a weight parameter, ω, ranging 
from 0 to 1.86  

 min (1- ω)E(y|x) + ωVar(y|x) (17) 

9. Variation Risk Priority Number 
Variation Modes and Effects Analysis (VMEA) is a tool developed by Ref. 52, as a way to target design 

improvements that reduce variation risk.  It is based on the idea of Failure Modes and Effects Analysis, replacing 
failure modes with variation sources (as typical causes of failures), and includes the following steps:  

1. Identify “Key Product Characteristics” (KPCs), whose variation might adversely affect product function or quality. 
2. Decompose KPCs into sub-KPCs (design characteristics) that influence the KPC. 
3. Identify noise factors (NFs) that affect each sub-KPC.   
4. Assess sensitivity of KPC to sub-KPCs and sensitivity of sub-KPCs to each NF. 
5. Assess variation size of NFs. 
6. Calculate Variation Risk Priority Number (VRPN), which is the ‘variation risk’ for each NFs or sub-KPC.   

 VRPNNF = αi2αij2σij2  (18) 
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where αi is the sensitivity of the Key Product Characteristic (KPC) to ith sub-KPC, αij is the sensitivity of ith sub-KPC 
to action of jth NF, and σij is the NF variation size.  VRPN of a sub-KPC is then calculated as the sum of each VRPNNF 
acting on it.  Sub-KPCs and NFs can then be prioritized by their contribution to total variability of the KPC.   

This VMEA process can be applied at any design stage.  The methods for calculating sensitivity, variation size, 
and variation risk can change according to the design fidelity and information available. For example, in a basic 
VMEA, sensitivity and variation size give a relative 1-10 score, to quickly learn about potential impacts of variation. 
In an enhanced VMEA, a mathematical model of system performance is available, f(x), and sensitivity can be 
estimates from the first derivatives of f.  Variation magnitude can be estimated as the (max(x)-min(x))/6.  For higher 
fidelity designs, VRPN can be calculated probabilistically with the method of moments:   

 αi = δY/δxi|µ, and αij = δXi/δNFij|0  (19) 

 𝜎𝜎𝑌𝑌
2 =  ∑ 𝛼𝛼𝑖𝑖

2(∑ 𝛼𝛼𝑖𝑖𝑖𝑖
2𝜎𝜎𝑖𝑖𝑖𝑖

2𝑛𝑛𝑖𝑖
𝑗𝑗=1 )𝑚𝑚

𝑖𝑖=1  (20) 

Through Taylor Series approximation, it can be shown that the sum of VRPN for each noise factor and each sub-
KPC is equivalent to the system variance.34  
10. Information Content of Axiomatic Design (i.e. Reliability) 

Information content of a design, used in axiomatic design (described in Section IIIB), has been suggested as a 
robustness metric to be minimized.  It is defined mathematically as I shown in Eq. (21), where p is the probability of 
success, known as R(t) in reliability engineering. Information content represents the amount of information gained 
when a random variable is sampled. The occurance of less surprising events (with higher p) provides less information 
than the occurrence of more rare events (low p). If the functional requirements of the system are uncoupled, then the 
total information content is the sum of I for each function.47 

 I = log2(1/p) (21) 

The axiomatic design approach allows the use of 
a design range that is not considered with Taguchi 
signal to noise ratios but is the basis of reliability 
prediction.  However, a design range by itself does 
not penalize for quality loss due to performance 
variation from a target. This can be illustrated in 
Figure 6.  Based on information content alone, the 
design that performs completely within the design 
range would be chosen over the one that does not, 
even though there may be more significant quality 
loss for the 100% ‘reliable’ design.  Ref. 87 suggests 
that “the optimum robust design is the one that has 
the highest probability of success and the smallest 
variance.” The authors propose a new robustness 
index that simultaneously considers information 
content and the loss due to performance variation (i.e. Taguchi’s quality loss).  It combines the probability of success 
principle used in axiomatic design with the concept of Taguchi’s loss function, in one index, Pr. 

 Pr = ∫ 𝜔𝜔(𝐹𝐹𝐹𝐹)∅(𝐹𝐹𝐹𝐹)𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚+∆
𝑚𝑚−∆  (22) 

where m is the target performance value, Δ is half of the acceptable performance range (outside of which would 
constitute system failure), ϕ(FR) is the probability density function for system performance, and ω(FR) is a weighting 
function.  ω(FR) is defined only within the boundary of the design range, has a maximum at m, and can take on any 
shape that reflects the relative quality loss of moving away from m.  For example, ω(FR) might be linear, or quadratic. 
Maximizing Pr selects the design that has the highest probability of success and the smallest variance.89  Note that that 
information content and quality loss will provide the same answer if the designs meet the independence axiom.47   

A unified, standardized method for robust design and quantification has not yet been agreed upon and robust design 
has rarely been applied to large scale problems.47  Many case studies are still needed to develop a consensus.47 

Figure 6. System probability density function and 
robustness weight function (a. linear; b. quadratic).87 
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D. Habitability Index – A Key Performance Characteristic for ECLSS 
The first step in robust design is to determine what key product characteristic should be optimized.  The most 

useful KPCs are a direct outcome of the process or product (i.e. are controllable by the system) and are a monotonic 
continuous variable.33,40  A KPC should be easy to measure, complete (covering all dimensions of the system process),  
and have a known target value (or acceptance limits).33,40

 Based on our definition of robust ECLSS, habitability of the 
spacecraft is the Key Product Characteristic to be optimized.  We suggest a Habitability Index (H) that is a utility 
function of all contributing environmental factors controlled by the ECLSS. A utility function measures “how 
desirable it is for a response to take on a particular value within the acceptance region for the requirement,”33 and is 
often defined on a scale of 0 to 1. The shape of a utility function could be linear or nonlinear, depending on what 
emphasis is placed on values that are closer to or further away from the target value. When there are multiple system 
responses that are important, a weighted vector of response variables can be combined into a single utility function. 

The ECLSS habitability index, H, defined on a scale of 0 to 1, represents the productive capacity of the crew 
provided by the ECLSS.  H is monotonic and continuous.  An H of 0 represents fatal conditions, while a value of 1 
indicates no health effects and a crew productive capacity of 100%.  Values in between 0 and 1 represent degradation 
in crew's capacity to perform, as a result of the degradation of the spacecraft habitability.  For example, H<0.25 might 
indicate conditions in which the crew is alive but incapacitated (e.g. unconscious); H<0.5 might indicate conditions 
in which the crew are ill or injured, with significantly reduced productive capacity; and H<0.75 might indicate 
conditions causing deleterious symptoms with reduced productive capacity.  Table 3 contains a list of suggested 
contributors to habitability, which include environmental characteristics under ECLSS control. Variation of these 
characteristics away from their nominal values imparts habitability loss (i.e. quality loss).  Marginal habitability, 
Hi(yi), is a marginal utility function, also defined from 0 to 1, representing the spacecraft habitability with respect to 
environmental factor yi.  Each contributor can be thought of as a single dimension of the total habitability space, if 
they are independent.  This is graphically depicted in Figure 7 for two dimensions.  In this example, deviation of total 
pressure or O2 partial pressure away from nominal values m1 or m2 (up or down) results in a linear reduction in 
habitability.  On the other hand, HCO2 could be an exponential function as shown in Figure 8 (as a theoretical example).  
Since human exposure limits for noxious substances are often time dependent, marginal habitability  may even be 
auto-regressive, meaning that Hi(t) = f(Hi(t-1)). The marginal habitability functions Hi(yi) must be standardized in 
order for robust ECLSS design to be applied equitably.  As shown in Figure 7, marginal habitability may not always 
be monotonic, but rather a ‘nominal-is-best’ type of function, where positive or negative deviation from some target 
m imparts habitability loss.   The definition of meaningful and consistent utility functions for each contributor to 
habitability, as well as the mapping of H to crew performance capacity will be challenging.  This will require research 
and data analysis by subject matter experts within the ECLSS and human health and performance communities.   

Table 3. Potential Habitability contributors. 
i Contributor to Habitability (yi) 
1 O2 availability in the cabin air (partial pressure) 
2 CO2 partial pressure in the cabin air 
3 Total cabin pressure 
4 Wet bulb temperature (a combination of absolute temperature and relative humidity) 
5 Food quality (measured in days of available food per crew member, meeting minimum quality standards) 
6 Water quality (measured in days of available water per crew member, meeting minimum quality standards) 
7 Presence of noxious substances (including toxins, pathogens, etc.) 

 
Figure 7. Mapping of environmental 

conditions to habitability. Figure 8. HCO2, marginal utility. 



International Conference on Environmental Systems 
 

15 

Next, the marginal habitability indices, Hi, are combined to estimate the total habitability of the spacecraft (H).  
There are many possible aggregate functions, such as the mean, geometric mean, product, minimum, or a distance 
metric (like Euclidean distance).  For example, Ref. 33 suggests taking the geometric mean of Hi, so that any 
unacceptable value makes the entire solution unacceptable. We considered the following criteria in defining H: 

1. H must be 1 when the crew’s performance capacity is full, i.e. when all Hi are equal to 1. 
2. H must be 0 under any fatal conditions, i.e. when any Hi = 0.  
3. H must be no better than any individual Hi, i.e. H≤min(Hi) 
4. The impact of Hi on H is not independent.  A reduction in one Hi increases the impact of another Hi. For 

example, if CO2 levels are high and available food supply is low, but each of these conditions are not enough 
to cause failure, the combination of the two may be multiplicative, making the spacecraft uninhabitable.   

Criteria 2 rules out the mean. Criteria 3 rules out the geometric mean and Euclidean distance.  Criteria 4 rules out 
the use of min(Hi).  The product of Hi appears to meet all criteria for our habitability index.  H is thus defined as:  

 𝐻𝐻 =  ∏ 𝐻𝐻𝑖𝑖𝑖𝑖 , for i = 1,….,n and Hi ∈[0,1] (23)  

where n = number of contributing factors.  H 
will change over time, particular due to changes 
in process inputs (x), the occurrence of 
disturbance events, and the system’s previous 
state, H(t-1), depicted graphically in Figure 9.  
Therefore, at any moment, H = H(t,x).  Hi can 
also be calculated to compare single subsystems, 
such as a thermal control system, or even for a 
single component by assuming all other factors 
are nominal and scaling the marginal habitability 
function Hi(yi) by the maximum expected 
capability of that subsystem or component.  For 
a single component j, multiply its output, yij by a 
scaling factor, n, where n is the number of 
components it would take to provide Hi of 1.   

E. A Proposed Metric for ECLSS Robustness, ЯH 
Ref. 17 discussed several important features for a meaningful and usable ECLSS robustness metric.  A robustness 

metric must quantify the system’s ability to maintain consistent performance (i.e. conditions necessary for crew 
productivity) in time, under perturbation of state, and in the event of system disturbance (failure or other shock).17 
This accounts for the contributing factors of reliability, resilience, and survivability, as an extension beyond the 
traditional notion of sensitivity to noise.  In addition, a robustness metric should address spacecraft habitability, not 
just crew survival; apply to all levels of system abstractions (components, to subsystems, to integrated system); apply 
to all levels of design fidelity; be practical for use, relevant, and objective; and be compatible with existing assessment 
tools and all technology types.17 Our proposed approach applies conventional robustness metrics, while expanding 
them to include not only input variation but the potential for failure or other disturbance events.  These events may or 
may not be recoverable or repairable.  After review of all of the robustness, resilience, and reliability metrics suggested 
in engineering literature (and summarized in Sections IVA-IVC), a metric based on average quality loss, defined by 
Eq (5) and Eq (6), appears best suited for this application.  Given habitability index H, defined from 0 to 1, we herein 
define habitability loss (LH), expected value of habitability loss, E(LH), and subsequent ECLSS robustness, ЯH, as  

 LH = (H-1)2 (24) 

 E(LH) = E[(H-1)2] = [1-E(H)]2 + Var(H) (25) 

 Я𝐻𝐻  =  1 − �E(𝐿𝐿𝐻𝐻)  =  1 − �[(1 − E(𝐻𝐻))2  +  Var(𝐻𝐻)] (26) 

This definition also builds on the concept of integral functional loss, often used to quantify resilience,64,70,71,72,73 where 
ЯH is equivalent to the realized system performance, as a percentage of target performance, integrated over time.  This 
metric has several advantages over other possible metrics considered.    

Figure 9. Habitability over time for mission of 
duration tend minus t0. 
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1. ЯH is defined on a scale of 0 to 1.  When E(H) is 0, var(H) is also 0, such that ЯH is equal to 0, the minimum 
possible value.  Similarly, when E(H) is 1, var(H) = 0, such that ЯH is equal to 1, the maximum possible value.  
A bounded scale allows specification of robustness requirements across various subsystem technologies.    

2. ЯH is reduced by variance of system performance from the mean, as well as by deviation of the mean from 
target performance (bias), incorporating both components of quality loss in one measure.   

3. The ЯH components (mean and variance in habitability, H) make the metric intuitive and simple to calculate.  
4. The ЯH components can be estimated throughout design, with different levels of fidelity, and can include 

meaningful detailed information about system function.   
5. Habitability index H will be impacted by process sensitivity to variation (conventional Taguchi notion of 

robustness) but also by disturbance events (incorporating reliability, resilience, and survivability).    
6. Because H is defined for components, subsystems, or integrated systems, ЯH can be quantified at any level of 

system abstraction.   
7. Finally, the cost of deviation from the mean is represented by mapping system response y into a utility function 

(similar to the k term in Eqs. (5) and (6)).   

V. Evaluating and Improving ECLSS Robustness 

A. Evaluating ECLSS Robustness, ЯH 
With ЯH defined, the designer can apply the metric throughout the design process.  This requires the 

characterization of uncertainty (or noise factors) and evaluation of the effects of uncertainty on habitability index H 
(steps 2 and 3 in the Methodology for Robust ECLSS Design).  Noise includes potential variation in process inputs and 
operating conditions, as well as the probabilities of component or subsystem failure (reliability), recovery or repair 
(resilience), and survival, in the event of a catastrophic failure.  Recall that at any given moment in time, habitability 
is a function of time t and x, which is a multivariate state space for inputs and external conditions with a joint 
probability distribution.  This can include continuous inputs as well as a binary vector of discrete event occurrences. 
Variation sources could be identified and quantified from historical operational ECLSS data or from subject matter 
experts. There are a wealth of modeling tools for predicting the effects of noise factors x on outcome H, which can be 
categorized as deterministic, stochastic, or physical.  Given a deterministic model of system performance, f(x), and 
given mean and variance of inputs x, E(H) and Var(H) can be solved analytically, through approximation (e.g. Taylor 
series approximation) or Monte Carlo simulation.  If the joint probability distribution, p(x) is known,, then E(H) can 
be estimated stochastically as the integral Hi*p(x).  This approach is similar to Probabilistic Risk Assessment (PRA). 
If the system is too complex to model mathematically, a physical model (or prototype) can be built and tested, to 
measure the variation in yi across the range of x.   At lower design fidelity, a simple scoring method can even be used 
to calculate a rough estimate of Var(H), such as the Variation Risk Priority Number, as shown in Eq. (18).  Finally, 
given an estimate of E(H) and Var(H), the designer can calculate ECLSS robustness ЯH, with Eq. (26).  This is step 4 
of the Methodology for Robust ECLSS Design.    

B. Improving ECLSS Robustness Through a Defense-in-Depth Type Strategy 
Once we know how to calculate ЯH for a given system design, how do we then identify the best ways to improve 

robustness?  A metric alone does not tell how to achieve robustness. Following step 6 of the Methodology for Robust 
ECLSS Design, the designer should first identify design features or noise factors contributing most to habitability loss. 
Many of the robustness metrics described in Section IV C are excellent tools for doing so, such as sensitivity analysis, 
variation modes and effects analysis, signal to noise ratios, or information content from axiomatic design.  Next the 
designer might explore potential design improvements that target the most influential noise factors or contributors to 
habitability loss. There is a plethora of tools in reliability engineering, resilience engineering, survivability engineering 
and robust design that can be employed.  For example, reliability improvement might be achieved by adding 
redundancy, increasing material strength or margin, decreasing tolerances, decreasing complexity (i.e. information 
content), or decreasing coupling (functional independence).  Sensitivity might be improved by choosing design 
parameters with less influence on y (Taguchi methods).  Resilience might be improved by adding fault detection and 
isolation, repair mechanisms, noise reduction through shielding, while survivability might be improved by adding 
failure contingency capability.88  There are generally three ways to increase ECLSS robustness: 

1) Increase the overall system performance capacity, by increasing the expected value of Habitability, E(H).  
This is equivalent to bringing the mean on target in Taguchi’s robust design process.   

2) Decrease variability by decreasing the sensitivity of H to variation in x.  This is related to the concept of 
parameter design in Taguchi’s robust design process.  
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3) Decrease the size of the uncertainty space (covariance of x), by reducing exposure (e.g. shielding) to noise, 
tightening tolerances, or removing threats all together.  This is typically the most difficult and expensive 
means of improving ЯH. 

We propose a ‘defense-in-depth’89,90 type design strategy 
that systematically identifies and evaluates added design 
features to improve quality (sensitivity), reliability, resilience, 
and survivability, in that order, as shown in Figure 10.   Quality 
engineers have found that the most cost-effective improvements 
are likely those that reduce sensitivity to noise.  Therefore, this 
is the first line of defense.  The second line of defense is to 
improve reliability, by using stronger components, remove 
failure modes, or adding fault tolerance (through redundancy). 
The third line of defense is to increase the ability to avoid, 
absorb, or recover from disturbances and failures (resilience 
engineering).  And finally, the last defense is to improve the 
chances of survival in the event of a catastrophic (unrecoverable) 
system failure.  

Given a set of design solutions, the best option is the one that 
minimizes the cost of quality, i.e. the solution for which the cost of design change (ΔC) is less than the value of loss 
prevention (ΔP). For ECLSS, the cost of a design change could potentially be estimated by the change in ESM, while 
the value of loss prevention is quantified by increased robustness, ЯH.   Ref. 91 states that, “the lowest ESM option is 
thus the best choice, provided the options have the same function, reliability, safety and interfaces or are adjusted 
suitably.”  The problem is that most architectural comparisons based on ESM do not account for reliability (or 
robustness for that matter).  Therefore, we propose a normalized Equivalent System Mass, ESMЯ that is the equivalent 
system mass as defined by Ref. 91, divided by ЯH, as shown in Eq. (27).   

 ESMЯ =  ESM
Я𝐻𝐻

 (27) 

ESMЯ theoretically represents the total mass of the systems that would be required to achieve an equivalent level 
of robustness.  Given that H accounts for functional capacity and variance, the normalized ESM accounts for the 
overall functional capacity, reliability, resilience, and survivability of the ECLSS.  The optimal ECLSS architecture 
can now be defined as one in the feasible design space (meeting minimal functional requirements or constraints) that 
has the minimum cost of quality, or ESMЯ.   

VI. Conclusion 
Many studies and reports on ECLSS performance cite the need for robust systems.  There has been much progress 

in the definitions, assessment tools, and design practices for ECLSS reliability.  However there has been little attention 
given to the definition, tools, and practices for robust ECLSS design.  Sometimes the word robust is used 
interchangeably with reliable, resilient, and survivable.  We propose that robust encompasses the other three distinct 
and equally important aspects of system performance.  ECLSS robustness is its ability to maintain habitable conditions 
for crew survival and productivity over the mission lifetime under a wide range of conditions. This wide range of 
conditions includes ordinary usage, temporary disturbances or disruptions, and longer term, sustained changes in the 
system or mission context. In order to apply a Robust Design Methodology to environmental control and life support, 
we must first define what it means to be ‘habitable’, what it means to ‘maintain’ habitability, and what ‘wide range of 
conditions’ might occur.  A Methodology for Robust ECLSS Design is proposed herein, that incorporates variation 
sources into calculation of a habitability index. Habitability Index (H) is a utility function of all environmental quality 
factors that are controlled by the ECLSS.  We next propose an ECLSS robustness metric, ЯH which is a function of 
the mean and variance of H.  This metric can be used to compare alternate ECLSS designs and to evaluate the merit 
of potential design improvements.  Finally, we suggest a ‘defense-in-depth’ type design strategy that systematically 
evaluates added design features to improve quality, reliability, resilience, and survivability, in that order.  The ECLSS 
robustness metric ЯH can then be used in combination with ESM estimates to calculate a normalized ESM, 
representing the cost of quality for the design change under consideration.  The optimal ECLSS architecture can now 
be defined as one in the feasible design space with the minimum cost of quality.     

Figure 10. Defense-in-depth strategy 
for robust ECLSS design. 
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The Methodology for Robust ECLSS Design defined herein is generalized and flexible, such that it can be applied 
to any system, subsystem, or component, at any stage of design.  However, standardization requires the development 
of marginal habitability functions (i.e. utility functions) for each ECLSS function.  This can only be achieved through 
cooperative research and data analysis by subject matter experts within the ECLSS and human health and performance 
communities. Once this is accomplished, the next step is to demonstrate robustness quantification through analysis of 
historical ECLSS performance data and to demonstrate the robust design methodology through specific examples. 
Though reaching consensus on utility functions may be challenging, it will be instrumental in the provision of robust 
ECLSS, enabling long duration human exploration of deep space.   
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