Investigating Reentry Plasmas using Sounding Rockets

Adam C. Escobar & Sven G. Bilen

Next-Generation Sub-orbital Researchers Conference 2017
Presentation Overview

- History of Hypersonic Flight
- Sounding Rocket Trajectory
- Reentry Plasma Formation
- Mitigation of Reentry Plasma Effects
- Previous Hypersonic Plasma Diagnostics
- Plasma Impedance Probes
- Preliminary Simulation
- Conclusions
History of Hypersonic Flight

1949
Bumper Rocket Program
V2 / WAC Corporal
(Anderson, 2006)

1967
Scout Vehicle
RAM C-I
(Akey, 1970)

1970
Scout Vehicle
RAM C-III Payload
(Dunn, 1973)

The content of this slide is subject to the propriety statement on the title slide.
Recent History of Hypersonic Test Flights

2005
DLR SHEFEX

2010-2011
DARPA HTV-1/2

2012
DLR SHEFEX II

2012
NASA Langley IRVE-3

2009-2017
AFRL, NASA, Australian DSTO
HIFiRE

The content of this slide is subject to the propriety statement on the title slide.
The content of this slide is subject to the propriety statement on the title slide.
Comparison to Shuttle & Exploration

Space Shuttle
7.8 km/s (17,500 mph)

Exploration Flight Test 1
8.9 km/s (20,000 mph)
Compression of air between shock front and vehicle causes a dense highly collisional plasma to form

Why care about the plasma formed?
- RF Communications Blackout (NASA Technology Roadmap – TA 5.2)
- Boundary Layer Flow Analysis
- Atmospheric Composition Determination

Hartunian, 2007

Rybak, 1971
Mitigation of Reentry Plasma Effects

- Electrophilics / Ablatives
- Sharp Tip
- $E \times B$ Drift
- Matching Plasma Impedance
- Higher Frequencies / TDRSS

Belov, 2001

Kim, 2008

Akey, 1970

Davis, 2011

The content of this slide is subject to the propriety statement on the title slide.
Previous Hypersonic Plasma Diagnostics

<table>
<thead>
<tr>
<th>Index</th>
<th>Band</th>
<th>Frequency [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>VHF</td>
<td>225.7</td>
</tr>
<tr>
<td>4, 5</td>
<td>VHF</td>
<td>259.7</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>5700 (5800*)</td>
</tr>
<tr>
<td>6, 7, 8, 9</td>
<td>X</td>
<td>9210</td>
</tr>
</tbody>
</table>

Reentry Plasma Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min Value</th>
<th>Max Value</th>
<th>Unit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron Density</td>
<td>3×10^{14}</td>
<td>6×10^{17}</td>
<td>m3</td>
<td>Dunn, 1973</td>
</tr>
<tr>
<td>Collision Frequency</td>
<td>6.3×10^7</td>
<td>1.3×10^{11}</td>
<td>s$^{-1}$</td>
<td>Hartunian, 2007</td>
</tr>
<tr>
<td>*Peak Plasma Layer Distance</td>
<td>0</td>
<td>11</td>
<td>cm</td>
<td>Dunn, 1973</td>
</tr>
<tr>
<td>Electron Temperature</td>
<td>4000</td>
<td>10000</td>
<td>K</td>
<td>Dunn, 1973</td>
</tr>
</tbody>
</table>

The content of this slide is subject to the propriety statement on the title slide.
Plasma Impedance Probes

- RF stimulus to Probe (Antenna) with the excitation signal swept in frequency.
- The reflected magnitude and phase response provides the plasma impedance.
- The plasma impedance determines the plasma parameters:
 - Electron Plasma Density
 - Electron-Neutral Collision Frequency
 - Electron Temperature (Under Investigation)
 - Plasma Layer Thickness (Under Investigation)
- Space Lab and Penn State investigating new methods to determine these plasma parameters.
Preliminary Impedance Simulations

Reentry Plasma Effects
- Negligible geomagnetic field effects
- Decreased from ideal 50 Ω
- Wide BW (real)
- Resonance not at peak real impedance
Conclusions

- **Why care about reentry plasma formation?**
 - RF Communication Blackout (NASA Technology Roadmap)
 - Boundary Layer Flow Analysis
 - Atmospheric Composition

- **Sounding rockets can provide a low-cost test platform for reentry plasma studies.**

- **Needs for further understanding of reentry dynamics:**
 - New Sounding Rocket trajectory required utilizing high thrust configurations and attitude adjustments prior to motor burn phases (i.e. Black Brant XII-A or similar)
 - Partnerships in investigation of multiple reentry technology areas

- **Needs for further understanding of the reentry plasma environment:**
 - New Theory Development & Simulation
 - Wind Tunnel Verification
 - Sounding Rocket Flight Verification
References

